
On Race Vulnerabilities in Web Applications

Roberto Paleari, Davide Marrone, Danilo Bruschi, Mattia Monga

Dipartimento di Informatica e Comunicazione,
Università degli Studi di Milano,

Milano, Italy
{roberto, davide, bruschi, monga}@security.dico.unimi.it

Abstract A web programmer often conceives its application as a se-
quential entity, thus neglecting the parallel nature of the underlying exe-
cution environment. In this environment, multiple instances of the same
sequential code can be concurrently executed. From such unexpected par-
allel execution of intended sequential code, some unforeseen interactions
could arise that may alter the original semantic of the application as it
was intended by the programmer. Such interactions are usually known
as race conditions.
In this paper, we discuss the impact of race condition vulnerabilities on
web-based applications. In particular, we focus on those race conditions
that could arise because of the interaction between a web application and
an underlying relational database. We introduce a dynamic detection
method that, during our experiments, led to the identification of several
race condition vulnerabilities even in mature open-source projects.

1 Introduction

The overwhelming majority of new computer applications are now developed
adopting the web paradigm. Communications relies on the HTTP protocol, and
the computation is performed via a client-server model, where client and server
are respectively represented by a web browser and a web server, appropriately
augmented by extension modules which enable the execution of server-side code.
The applications which satisfy these requirements are generally called “web ap-
plications”.

Originally, these applications were implemented using simple mechanisms to
create dynamic web pages. One of these technologies is the Common Gateway
Interface (CGI) [1], intended to provide web-based access to legacy applications
by acting like a gateway between the web server and the underlying legacy ap-
plication. Today, however, the most popular approach is based on extended web
servers, that provide modules that implement frameworks more suitable for the
development of web-based applications. Basically, the web server is able to in-
stantiate the virtual machine needed to interpret web application programs, that
are typically written in a dynamic-typed scripting language, such as PHP, Perl,
Python or Ruby. Typically, web applications rely on a three-tiers architecture
(web browser/web server/database manager). A very popular platform is the

so called LAMP solution stack [2]: a Linux machine runs an Apache web server
which is able to control a MySQL database management system through a PHP
script.

Web applications have been reported to be subject to different kinds of at-
tacks, many of which are specific of the web environment [3]. Such vulnerabilities
could lead to the compromise or disclosure of sensitive information. According
to a recent analysis [4], more than 60% of the software vulnerabilities annually
reported are specific to web applications. This is mostly due to the fact that
it is often quite easy to create simple web applications, thus many of them are
written by developers with low programming or security skills. Nevertheless, web
applications are valuable targets for attackers, because they often interface with
a back-end server that handles sensitive information as credit card numbers,
e-mail addresses, financial records, etc.

The most recurrent flaws in web-based programs arise from the interaction
between the application and the underlying relational database used as a long-
term storage medium [5], while others depend on the incorrect handling of trust
relations between clients and servers [6]. All these types of vulnerabilities can be
ascribed to the lack of proper input validation: some parameters that are under
the direct control of a client are not properly validated.

In this paper we will introduce and discuss a new form of vulnerability which
affects web applications. Such a vulnerability emerged by observing the behav-
ior of some web applications when forced to be executed concurrently, and it
turned out that they suffer the typical race conditions symptoms. Although race
conditions are a well understood problem, in this work we will show that the
impact of such an issue on web applications is still largely unexplored. More
precisely, most of the web applications are made of many different scripts, each
performing simple and well-defined tasks, easily described by sequential code.
However, it is often neglected that any time a user requires the execution of
a server side script, such a script becomes the body of a new thread that is
executed in a multi-threaded environment. This could lead to more application
scripts instances being concurrently executed. If scripts are conceived as sequen-
tial code and if they use some shared resources (e.g., a database), the parallel
execution of these multiple instances could provoke races. For example, by ex-
ploiting such concurrency problems, in our experiments we have been able to by-
pass brute forcing protections, exploit SMS gateways, circumvent anti-flooding
mechanisms and we managed to submit multiple votes on polls where each user
was constrained to vote just one time.

We further deep our analysis in order to identify detection strategies for race
conditions in web applications. In particular, we are interested in the detection
of those race conditions that could arise because of the interaction between a
web-based application and an underlying relational database. The problem of
detecting and mitigating race conditions has been extensively discussed in liter-
ature, but the literature is entirely focused on applications expressly written as
concurrent. The problem we face in this paper is very different as it is related
to detecting synchronization problems in sequential code which can be executed

concurrently. In other words, the problem is not, as usual, to analyze the correct-
ness of a programmed synchronization policy, but to detect whether the implicit
interprocess communication contained in a piece of sequential code could lead to
security failures, when multiple instances of the code are executed concurrently.

We can summarize the key contributions of this paper as follows:

– We shed light on the impact of race conditions on web-based applications.
Race conditions are a well-known problem, but the effects of those on web-
based programs have not been underlined, so far.

– We propose a novel technique for the detection of race conditions that arise
from the interactions between a web application and an underlying database.
Our proposed method has been implemented in a prototype that led to
the detection of several previously unknown vulnerabilities in mature open-
source applications.

– We discuss possible countermeasures to hamper exploitation attempts.

This paper is structured as follows. In Section 2 we discuss the implications of
race conditions on web-based programs and the impact of this kind of synchro-
nization issues on real-world applications. Section 3 introduces our detection
method together with some implementation details and experimental results.
Possible countermeasures are analyzed during Section 4, while in Section 5 we
discuss related work. Finally, Section 6 briefly concludes our paper.

2 Race Conditions in Web Applications

A race condition occurs when different parallel processes access shared data with-
out proper synchronization [7]. Races are difficult to spot because the human
mind is not good at extensively analyze the exceedingly high number of interleav-
ings allowed by the operating system scheduler. Thus, concurrency is a typical
source of vulnerabilities [8,9,10], and one of the oldest security problems [11].
Here we will show that the same phenomenon occurs in web applications.

Often web applications are conceived as a set of scripts that query and update
an underlying database. In these situations, a programmer does not usually care
about concurrency issues, and considers his scripts as executed by the web server
in a strictly sequential order. So, he typically ignores the intrinsic architecture
of the underlying web server, which enables multithreaded executions of code.
Moreover, it is often neglected that the underlying DBMS represents a shared
resource that can be concurrently accessed by multiple script instances. As we
will show, by exploiting these facts, a malicious user could induce an application
to behave differently from what the programmer meant.

As an example, consider the PHP script fragment depicted in Figure 1. In
this example, the programmer wanted to implement an e-banking money transfer
procedure: the user tries to withdraw an amount of money; the system checks
if the user has that amount on his account (lines 1–4) and, if so, it authorizes
the execution of the requested operation (line 5). Finally, the system updates
the user’s account by withdrawing the aforementioned amount (lines 6–7). Now

1 $res = mysql query(”SELECT credit FROM Users WHERE id=$id”);
2
3 $row = mysql fetch assoc($res);
4 if($row[’credit’] >= $ POST[’amount’]) {
5 〈execute the requested operation〉
6 $new credit = $row[’credit’] − $ POST[’amount’];
7 $res = mysql query(”UPDATE Users SET credit=$new credit WHERE id=$id”);
8 }

Figure 1. An example of a vulnerable PHP script fragment.

suppose that a script instance P executes the statement at line 3, thus retrieving
from the database a tuple t of the Users relation. The procedure in Figure 1
would be prone to races if another script instance could obtain read or write
access to t before P fully executes the query at line 7. In fact, it can be easily
verified that the parallel execution of multiple instances of this script fragment
on the same server could result in a violation of the precondition of line 4.

Some solutions to this classical test & set problem may be available, how-
ever here the main issue is that a typical programmer does not conceive his web
application as a multi-threaded or multi-process entity.

In this paper we will focus on the detection of race condition vulnerabilities
in PHP applications. However, our results are not language-dependent, and can
easily be extended to other platforms, such as Perl, Python, and so on. More-
over, we also limit our analysis to the race conditions that could arise from the
interactions between a web application and an underlying DBMS. It is worth
noting that race conditions could derive from unmanaged access to any shared
resource: a database is only an example of such a resource, even if probably the
most common one.

Although not every race condition has necessarily security-relevant conse-
quences, in our experiments we have been able to found a significant number of
concurrency issues, so the overall probability of the security relevance of at least
one of these defects is still significantly high.

We would also stress that the solution to these kind of problems cannot
be delegated entirely to the DBMS implementors. Usually, even simple DBMSs
do provide proper synchronization features that allow programmers to handle
concurrency problems (e.g., locking statements, ACID transactions, . . .) and
they actually guarantee the atomic execution of each submitted query (or each
submitted transaction). However, DBMSs cannot automatically recognize when
a sequence of queries should be executed atomically, because this heavily depends
on the application’s logic. Thus, is up to programmers to properly use database-
level synchronization primitives in order to avoid concurrency problems in their
applications.

2.1 Case Studies

In order to verify the impact of race condition vulnerabilities on real-world web-
based applications, we tried to exploit two remote closed-source commercial sys-
tems, having only access to their external interfaces. The first application is
managed by an Internet service provider, while the second one belongs to a
telecommunication provider. For obvious reasons, the names of the corporates
involved will not be disclosed. Both applications are designed to permit users to
send SMS messages through a web interface, allowing only a limited number of
SMS per user, per day. For both applications, our conjecture was that, when an
authenticated user tries to send a message, the application checks his account
information from the database. We imagined that the program first sent the
message and finally updated the user’s account. This behavior is very similar
to the bank example reported in Figure 1. Then, we tried to exploit the remote
applications. In the first case, we sent 11 parallel SMS requests. The remote ser-
vice was supposed to accept only 10 requests, but we received 11 SMS messages
on our mobile phone. In the second case, we sent 10 parallel requests. The appli-
cation was supposed to discard all but one request, so we were quite surprised
when we received all the 10 SMS messages.

This simple experiment leads us to believe that a consistent number of com-
mercial (and maybe critical) real-world applications are vulnerable to similar
attacks.

We have also tested mature open-source applications (e.g., phpBB3 [12] and
Joomla! [13]): not even a single application from those we analyzed was found to
be free from concurrency problems. Even if many of these defects cannot lead to
compromise the application’s logic, some of them can actually allow a malicious
user to violate the security properties of the web-based application. Nevertheless,
exploiting race condition-based vulnerabilities requires some knowledge about
the application’s logic and thus their exploitation is surely more difficult with
respect to other categories of web vulnerabilities, such as cross site scripting
(XSS [6]) or SQL injection (SQLI [5]). Despite these issues, we have been able
to alter the original semantics of every real-world application we have analyzed
during our experiments.

3 Detecting Race Conditions in LAMP-like Web
Applications

In this section, we propose a method based on dynamic analysis for the detection
of race conditions in LAMP-like web applications. The idea is to build a system
which supports a programmer during the development of a web application,
and which is able to automatically locate suspicious query sequences. Such an
approach has been implemented in an experimental prototype.

We focused on those race conditions that arise from the interactions between
an application and the underlying SQL-enabled relational database. Moreover,
we are interested in the detection of those issues that could result from the

execution of multiple instances of the same web application script. We leave the
detection of inter-module race conditions for future work.

Our detection strategy is formed by the following components:

1. a SQL-query logger, which monitors a concrete execution of the web appli-
cation to be analyzed and logs each query that the application submits to
the DBMS;

2. an off-line analyzer, which examines the log files that have been produced
by the SQL-query logger and detects the potential dangerous queries. Such
a component is realized by two modules: the first one searches the log files
for query interdependencies that could be considered as a symptom of the
presence of a race condition; the second module refines the results obtained
so far, by removing query pairs that are guaranteed to be race-free.

3.1 SQL-query logger

There are many different methods that can be employed in order to log database
queries: we could for example intercept them at the DBMS level, or we could
modify the module used by the application interpreter to interact with the under-
lying database; alternatively, we could intercept SQL queries at the application
level, by hooking database-related functions. As we discuss in more detail in a
following section, our current prototype implements the latter approach. Thus,
at runtime, each time the application invokes a database-related function to
submit a SQL statement to the DBMS, our logger module intercepts the query
string. Then, each query that has been intercepted is recorded into a text file for
the subsequent off-line analysis.

3.2 Off-line analyzer: basic approach

Once database queries have been collected, the resulting log files are examined
by our query analyzer. The idea behind our method is to exploit query inter-
dependencies so that likely race conditions can be detected. More precisely, let
q = {s1, s2, . . . , sn} be a query, where si denotes the schema objects (attributes
or relations) referred to by q. We consider a schema object to be used by a query
when its value is read. An attribute is defined by a query when it is altered by
the execution of such a statement. Instead, we consider a relation to be defined
by a query if it modifies the total number of tuples in that relation. As an ex-
ample, a DELETE statement defines the relation that appears in its FROM

clause, while it uses every schema object that appears in its WHERE clause.
Given a query q, we define use(q) and def(q) as the sets of schema objects

that are respectively used and defined by q. Thus, we can formalize the notion
of interdependence with the following definition:

Definition 1. Let (p, q) be a pair of SQL queries. Then, (p, q) are said to be
interdependent if use(p) ∩ def(q) 6= ∅.

Input: Q = {qi, i = 1, 2, . . . , n}, a list of SQL queries.
Output: R = {(p, q), p ∈ Q ∧ q ∈ Q}, a list of paired SQL queries that suggest

possible race conditions.

R = ∅
for i = 1, 2, . . . , n do

q = Q[i]
D = def(q)
for j = i− 1, i− 2, . . . , 1 do

p = Q[j]
U = use(p)
if D ∩ U then

R = R ∪ {(p, q)}

Figure 2. Pseudo-code for a simplified version of the detection algorithm.

Our observation is that interdependent queries could give rise to race con-
ditions. Thus, our detection strategy consists in determining a set containing
every pair of interdependent queries.

Definition 2. Let Q = {q1, q2, . . . , qn} be a set of SQL queries. We define a
total ordering relation < on its elements, such that ∀qi, qj ∈ Q, qi < qj if and
only if i < j, i.e., qi appears before qj in the query log.

Definition 3. The set R of interdependent query pairs is defined as:

R = {(qi, qj) ∈ Q×Q | (qi < qj) ∧ (use(qi) ∩ def(qj) 6= ∅)}.

The algorithm reported in Figure 2 formalizes these notions. The algorithm
receives as input a list of SQL statements, gathered dynamically by the query
logger and outputs a set of interdependent SQL query pairs (p, q). From each of
these SQL query pairs, a race condition could arise.

3.3 Off-line analyzer: further heuristics

Some of the query pairs collected with the approach sketched above may repre-
sent false positives. Thus, we developed a further module to remove those pairs
that are guaranteed to be race-free. Such a module is based on the following
heuristics.

WHERE clauses A significant source of false positives are interdependent
queries whose relative WHERE clauses always identify disjoint sets of rows.
As an example, consider the SQL queries reported in Figure 3: here the applica-
tion extracts from the Sessions relation the user IDs not yet expired; afterwards,
the application removes stale sessions from the database. Apparently, a race is
possible between the two queries, because the first one uses the Sessions relation

SELECT user id
FROM Sessions
WHERE expiry time >= 1195745465;

DELETE FROM Sessions
WHERE expiry time < 1195745465;

Figure 3. An example of two conflicting SQL queries with disjoint WHERE clauses.

(as well as the user id attribute) while the second statement defines it. This is
however a false positive, because the intersection of the sets of rows selected
by the two statements always corresponds to the empty set. To address this
problem we need a method that allow us to assert when two WHERE clauses
identify disjoint sets of rows. In such a situation, no race condition could occur
between the two queries, even if they are interdependent. In the following dis-
cussion, we assume that two queries q1, q2 share the same FROM clause f but
have (possibly) different WHERE clauses w1, w2.

A viable approach is to exploit the possibility of dynamically querying the
DBMS. Every time we need to assert the disjunction between the sets of rows
identified by w1 and w2 we can build the statement:

SELECT ∗ FROM f WHERE w1 AND w2

If the set of rows returned by such a statement is not empty, then we can assert
that there can be a race between queries q1 and q2. It is worth nothing that
if an empty set is returned, then we can only state that no race can occur in
the current database instance (i.e. tuples currently contained in each database
relation), but we cannot be sure that no race could ever happen.

An alternative approach consists of employing a decision procedure to assert
if the sets of rows identified by w1 and w2 are actually disjoint. Such a method
has the obvious advantage to be able to reason about any possible database in-
stance, and not only about the current one, thus overcoming the major drawback
of the previous approach. However, such a method would also introduce a sig-
nificant overhead due to the use of an external constraint solver. Moreover, it is
important to note that the constraint solver would probably not be able to han-
dle some particular SQL constructs, such as LIKE expressions or nested queries.
In these situations, the constraint solver would have to behave conservatively,
thus reporting that the analyzed queries are not guaranteed to be independent.
Nevertheless, in many practical situations this method is still effective.

Note that the constraint solver-based approach and the dynamic query ap-
proach are complementary rather than alternative: these two methods can be
employed together in order to combine the efficiency of direct DBMS queries with
the conservativism of the constraint solver. Every time a race condition is de-
tected, the DBMS can be dynamically queried in order to verify if, in the current
database instance, the sets of rows selected by the two WHERE clauses are not

disjoint. If these sets of rows turn out to be disjoint in the current database in-
stance, then we can fall back to the less efficient constraint solver-based method,
in order to obtain a sound answer.

Attribute-relation bindings Another significant source of false positives is
due to the fact that we cannot always accurately deduce the relation an attribute
belongs to, by only observing a single SQL query statement. Consider the query
SELECT a1, a2 FROM T1, T2. The a1 attribute could belong either to the T1

relation or to the T2 relation. The only thing we can do is to conservatively
assume that each attribute could belong to any relation used by the analyzed
query. Clearly, this could introduce a number of false positives during race de-
tection. To overcome this limitation, in these cases we allow our race detector to
actively query the application database to determine to which relation attributes
belong. In the above SELECT statement, our race detector would actively query
the underlying DBMS to determine the attributes of the T1 and T2 relations, in
order to discover which one contains a1 or a2.

Annotations Finally, it is worth nothing that the algorithm presented above
does not take into account any explicit synchronization attempt. We discuss
this particular design choice during Section 3.5. The main consequence of such
a limitation is that our detector will report a race condition even when a solu-
tion has been coded around it. Of course, such a behavior would seriously limit
the employment of our proposed detection method in the development cycle of
real-world applications. The accurate detection of every possible synchronization
attempt, without relying on the knowledge of the particular set of synchroniza-
tion primitives being used, is a complex task. In particular, in our situation this
task becomes completely not feasible because we are only observing the inter-
actions between the application and the database, without taking into account
any information that could be extracted from the web application’s code. For
these reasons, we allow the programmer to explicitly specify that the race con-
dition between a pair of SQL queries has already been fixed and should not be
reported anymore by including appropriate annotations into those queries. Ev-
ery annotation starts with the "#!" prefix. The ‘#’ character indicates that the
current line contains a comment1, so that our annotations will not be processed
by the underlying DBMS. The ‘!’ character allows our race detector to discern
annotations from normal comments. We support two different annotation types:

TAG <name> an annotation of this type allows the programmer to unambigu-
ously define a name for a particular SQL query;

SAFE <name> this annotation type specifies that a race condition between this
query and the query with name <name> should not be reported.

1 This is true for MySQL. Should this assumption not be true, it is only a matter of
changing the comment character being used.

#! TAG get all ids
SELECT user id
FROM Users;

#! SAFE get all ids
DELETE FROM Users
WHERE user id = 10;

Figure 4. An example of SQL queries annotated for suppressing race reports.

As an example, consider the queries reported in Figure 4. The programmer has
assigned to the SELECT statement the name get all ids by using the annotation
TAG. Then, the report of every race condition that could occur between the
first query and the second one has been suppressed with a SAFE annotation.
With such annotations, a programmer can easily test his web application with
our detector module plugged in, fix the race conditions that are detected and
then annotate the concerning queries so that the same races will not be reported
again.

3.4 Implementation

We have implemented our detection method in a prototype that handles PHP
applications and assumes the MySQL DBMS as their back-end.

The implementation of the query logger module consists of a PHP wrapper
procedure around the mysql query() function, so the only preliminary opera-
tion required to analyze a web application consists in replacing every call to
mysql query() with a call to our mysql query wrapper() function. Many web
applications include a class that provides methods for submitting queries to the
underlying database, so abstracting the caller from the particular DBMS being
used. Thus, in order to integrate the query logger module, only a very limited
number of these methods needs to be modified. Notice that even this opera-
tion is made completely automatic by a simple script. Our wrapper function
logs into a text file every query that has been submitted to the DBMS together
with some meta-information, such as the name of the script that issued that
query and a dump of the interpreter’s call stack. When a race is detected, such
meta-information could help the programmer to easily locate the problem.

After the queries generated by a web application have been logged, the log
files are sent to our query analyzer module in order to spot possible race condi-
tions. Our query analyzer module consists in roughly 2000 lines of Python code
and it implements the detection model discussed in Section 3.2. Our current pro-
totype only lacks of the constraint solver-based method for determining if the
sets of rows identified by two database queries are guaranteed to be disjoint. For
parsing MySQL statements, the query analyzer leverages the DBIx::MyParsePP
PERL module.

3.5 Discussion

The proposed detection algorithm has still some limitations, that can be sum-
marized in the following points:

– Our approach is completely dynamic, so it can only reason about a specific
execution path, i.e. the one that has been covered during the observed exe-
cution.

– We have no information about the application’s semantics other than the
query statements submitted to the DBMS. For example, we do not take
into account how data retrieved from the database is manipulated by the
application.

– Our detection algorithm does not take into account any synchronization
method that the application could adopt in order to avoid concurrency prob-
lems.

The first limitation could only be overcomed with the application of static
or hybrid analysis techniques over the program’s source code: by using static or
hybrid methods we would be able to reason about the whole application rather
than a single execution path. Unfortunately, the application of static program
analysis methods to an interpreted, object-oriented and dynamic-typed scripting
language like PHP is far than easy and it would require to deal with very hard
problems, as mentioned in [14]. For example, the analysis of PHP applications
requires to perform points-to and alias analyses, that are, in general, undecidable
problems [15]. The use of program analysis techniques would also allow us to
obtain more information about an application’s semantics, thus overcoming our
second limitation. We leave such improvements for future work.

The last limitation of our detection algorithm concerns the lack of support for
synchronization primitives. Rather than a real limitation, this is an explicit de-
sign choice. First, at the application level, to the best of our knowledge, PHP does
not provide portable synchronization primitives that are suitable for our needs.
For example, PHP supports the flock() function that implements a portable file
locking mechanism, that can be used for synchronization and mutual exclusion
purposes. However, as stated in the PHP manual [16], on some operating systems
flock() is implemented at the process level, and, on multi-threaded web servers
such as Apache, multiple PHP requests can be executed as multiple threads of
the same process, so making flock() completely ineffective. Moreover, flock()

blocks the caller until the file lock is released unless the LOCK NB flag is speci-
fied. However, this option is not currently supported on Windows systems. PHP
does provide wrappers for the System V IPC functions, but this feature is not
enabled by default and is not available at all on Windows platforms. Second, at
the database level, the available synchronization primitives are highly DBMS-
dependent and often too coarse grained. As an example, MySQL, probably the
most widely used open source database, supports LOCK and UNLOCK state-
ments that provide a relation-level locking mechanism. However, such a granular-
ity is often too coarse to be adopted in heavy-loaded web applications. MySQL
also supports ACID transactions with row-level locking, but this feature is not

Application Category Queries Time FP TP

Joomla! 1.5RC4 CMS 4086 90.92 s 0 55 (2)

phpBB 3.0.0 forum 2236 43.09 s 0 35 (4)

WordPress 2.3.2 blog/CMS 3638 47.04 s 0 47 (4)

Zen Cart 1.3.8a shopping cart 35194 1622.39 s 0 46 (1)

Table 1. Evaluation of the detection method. FP: False Positives; TP: True Positives
(security relevant true positives are reported in brackets). Note that these results have
been obtained without using the annotations supported by our system.

available when using MyISAM, the default storage engine. A more suitable mech-
anism is the GET LOCK() function[17]: it can be used to simulate record locks
by creating named locks. If a name has been locked by one client, GET LOCK()

blocks any request by another client for a lock with the same name. This allows
clients that agree on a given lock name to use the name to perform cooperative
advisory locking. Locks maybe released by calling RELEASE LOCK().

While there are suitable solutions, these can be used only by programmers
that are conscious of the concurrency issue and they require them to code explic-
itly a synchronization policy. Moreover, the penalty due to the use of synchro-
nization constructs is not always acceptable, because it could drastically reduce
the performances of the web application. Thus, we found that synchronization
primitives are rarely used in web applications and in our experiments the lack
of support for them has not raised the false positive rate. Moreover, the few
synchronization attempts we found at the PHP level, have actually been made
completely ineffective by the underlying storage engine.

3.6 Evaluation

To prove the effectiveness of our approach in detecting vulnerabilities, we ran our
prototype tool on some real word open-source web applications. Of course, the
main problem in evaluating our prototype (as with any other dynamic analysis
tool) concerns gathering relevant execution traces: the ability of our approach to
detect previously unknown race conditions heavily depends on the path coverage
rate obtained during the query logging phase. In our experiments, we tried to
stimulate the web applications being analyzed as if it was used by a typical user.
For example, with forum applications we tried to login by supplying both correct
and wrong credentials, we added new users, read some topics, created new topics
and polls, sent instant messages to other users, and so on.

We ran our detector on a Linux machine with a dual-core 2.0 GHz Pentium
processor and 1GB RAM. In Table 1 we summarize some of the results we
obtained during our experiments. The time required to analyze the application’s
log file of queries is very large, but more than 95% of the whole execution time
is spent while parsing SQL statements. Such an overhead is primarily due to the
inter-process interactions between our Python detector and the external Perl

SQL parser. The runtime overhead for logging SQL queries is negligible and not
reported in Table 1. As we already discussed during previous sections, not every
race condition we found was actually security relevant. However, we believe the
number of security relevant races we found together with the absence of false
positives prove the effectiveness of our detection method.

We can briefly summarize some of the vulnerabilities we run into in the
following categories:

multiple users Almost every application we analyzed was found to be vul-
nerable to a race condition on user uniqueness: a malicious user could reg-
ister multiple accounts with the same username, thus bypassing applica-
tion’s checks. Of course, the security impact of this vulnerability is highly
application-dependent. As an example, it could allow an attacker to take
advantage multiple times of a one-time bonus granted by a unique token.

brute forcing Some applications (e.g., phpBB3), in order to prevent brute forc-
ing attacks, check if the user that is trying to log in has already performed
too many login attempts. The procedure used to perform this operation
contains a race condition vulnerability that could allow a malicious user to
bypass the application’s attempts to limit brute forcing password attacks.
Depending on the application’s logic, such a vulnerability could allow an
attacker to perform just a limited number of additional attempts (e.g., when
the application ensures that tries ≤ MAX TRIES), or to completely circum-
vent application’s checks (e.g., when a brute force attack is reported only if
tries = MAX TRIES).

multiple poll votes Web forums and CMSs often implement polls. The appli-
cations try to assure that each user does not submit multiple votes to the
same poll, but every program was found to be subject to a race that allows
a user to vote multiple times by submitting parallel vote requests.

topic flooding phpBB3 and WordPress include an anti-flooding feature that
forces a user that has just submitted a message to wait a couple of seconds
before writing another post. Unfortunately, even this control can be easily
circumvented by an attacker because of a synchronization issue.

It worths noting that in the web applications we analyzed we have met very
few synchronization attempts. Unfortunately, even in these cases we have been
able to find concurrency problems. This confirms that programmers are not
aware of the actual impact of race conditions on web-based applications.

4 Countermeasures

Before concluding our paper, in this section we introduce some countermeasures
a programmer could employ in order to hamper exploitation attempts.

Probably, the most obvious solution is to completely prevent any concurrency
issue by forcing the web server to serve just one client request at a time. Unfor-
tunately, such an approach is typically too drastic and not applicable at all, as
it seriously limits the overall efficiency of the whole web-based application.

Another approach consists in employing some application-level or database-
level synchronization primitives in order to explicitly serialize the accesses to an
application’s critical regions. As we already discussed, many of these primitives
often hide some subtle platform-specific details that a programmer should ac-
curately consider before deploying his web-based application; otherwise just the
migration of the application towards a different server could alter his behavior
and introduce new vulnerabilities. During Section 3.5 we pointed out the lim-
itations of PHP/MySQL environments. Obviously, different frameworks could
surely offer more efficient and fine-grained locking statements (e.g., row-level
database relation locking), but this typically comes at the cost of less efficiency
or more resource-consumption.

For example, a table-level locking solution will surely be too coarse grained if
applied to the code snippet reported in Figure 1: here the requested transaction
could take some time to be executed, thus the application cannot be constrained
to serve just a single client for all that time. In this situation, an alternative
solution that does not require fine-grained locking primitives consists in moving
the UPDATE statement just before the execution of the requested transaction,
then lock the table before the first SELECT query and unlock it both after
the UPDATE statement and in the else branch. This solution is a simple two-
phase commit algorithm that requires an additional error handling procedure:
the credit is immediately withdrawn from the balance and must be restored if
the transaction fails.

Thus, the effectiveness and the efficiency of a synchronization solution is
highly application dependent. Automatically fixing race conditions by introduc-
ing appropriate locking statements, without affecting the efficiency of the whole
application, is surely a rather complex task. In fact, it would be quite simple to
blindly insert locking statements around a supposed critical region, but it would
be significantly harder to do so also avoiding deadlocks and without reducing
the performances of the web-based application. We plan to investigate on similar
automatic techniques in future work.

5 Related Work

Race conditions are probably one of the oldest software problems and their im-
plications have extensively been discussed in literature [7]. There has been a
substantial amount of research work on the detection of this kind of concurrency
problem, both for debugging and for security purposes. To the best of our knowl-
edge, this paper is the first one to focus on the implications of race conditions
on web-based application, so in the present section we will discuss alternative
solutions directed toward traditional (i.e. non web-based) applications.

Static analysis. Many static race detectors perform compile-time analyses over
a program’s source code in order to detect if a race condition could occur in any
possible program execution [18,19]. Other approaches [20,21] modify a program-
ming language’s type system so that the resulting language is guaranteed to be

race-free. Usually, the major drawback of these tools is an high false positive
rate: by reasoning over an application’s source code without running it, these
approaches are often forced to make some conservative assumptions about pos-
sible thread interleavings that could occur at run-time. Moreover, often static
methods require a substantial amount of annotation code in order to suppress
false positives.

Dynamic analysis. Dynamic methods work by instrumenting and executing a
program. These tools are typically easy to use and are more accurate than static
methods, as they can observe a concrete execution of the application. On the
other side, they are not sound: dynamic approaches can only assert the presence
of a synchronization issue on a program path that has been executed, but they
cannot prove the absence of race conditions. Several methods [22,23] are based on
the dynamic computation of Lamport’s happens-before relation [24], that outputs
a partial ordering on program statements. Other methods [25,26] use lockset-
based analysis [27], that stem from the assumption that race conditions occur
because a programmer forgot to protect a shared variable with an appropriate
lock. Basically, each shared variable is associated with a lockset that contains
locks held during accesses to this variable; if a lockset becomes empty, then a
race condition could occur. Some approaches [28,29] have also been proposed that
blend together the advantages of both these techniques. Finally, another dynamic
method [30] aims to prevent the exploitation of race condition vulnerabilities on
filesystem operations, by keeping track of possible interferences between the
actions performed by different processes: if a filesystem operation is found to
be interfering with another one, then the corresponding process is temporarily
suspended.

Model checking. Model checking is a powerful formal verification technique that
has also been applied to the detection of concurrency problems [31]. A model
checker receives as input a simplified version of an application’s source code
and exhaustively explores its execution states, searching for possible violations
of some asserted conditions. For example, some model checking tools have al-
ready been proposed to analyze concurrent Java programs for synchronization
issues [32]. Unfortunately, the application of model checking to large software
systems is still problematic. Moreover, often a significant effort is required in
order to build the simplified model to be supplied to the analysis tool.

Our proposed detection strategy can surely be classified as a completely dy-
namic detection method. However, the web environment shows some peculiarities
that lead to rather different problems than the ones discussed in the aforemen-
tioned works. In fact, currently web programmers are not aware of the implica-
tions of the lack of proper synchronization on their applications, while traditional
concurrent programs are actually written with synchronization in mind. Thus,
the approaches discussed above are mainly focused on analyzing the correctness
of a programmed synchronization policy. Instead, our work aims to make explicit

the implicit interactions among different instances of a sequential code that can
be executed concurrently.

6 Conclusions

In this paper we discussed race conditions in web applications. Race conditions
are a well-known security problem, but their impact on web-based programs has
not been explored sufficiently. We showed that, by exploiting unforeseen inter-
actions between different script instances, a malicious user could be able to alter
the behavior of a web application as it was intended by the programmer. We
further deep our analysis in order to investigate concurrency issues that could
arise because of the interactions between different instances of the same applica-
tion script when accessing to a SQL-enabled relational database. We proposed
a dynamic detection method that allowed us to locate several security-relevant
race conditions even in mature and well-tested web applications.

In the future, we plan to refine our detection method by considering how
instances of different web application scripts could affect each others. More-
over, we will improve our detection strategy by extracting some additional in-
formation from the application through the employment of more sophisticated
program analysis techniques, thus overcoming some of the limitations discussed
during Section 3.5. Finally, as web programmers will get aware about concur-
rency problems, they will surely start to try to solve these issues by using some
synchronization primitives. So, we plan to improve our analyses to include sup-
port for validating their use.

7 Acknowledgments

The authors would like to thank Lorenzo Cavallaro and the anonymous reviewers
for their useful suggestions and comments on this paper.

References

1. NCSA Software Development Group: The Common Gateway Interface. (1995)
2. Kunze, M.: Let there be light. LAMP: Freeware web publishing system with

database support. c’t 12 (1998) 230
3. Cova, M., Felmetsger, V., Vigna, G.: Vulnerability Analysis of Web Applications.

In Baresi, L., Dinitto, E., eds.: Testing and Analysis of Web Services. Springer
(2007)

4. Symantec Inc.: Symantec internet security threat report: Volume XII. Technical
report, Symantec Inc. (sep 2007)

5. Halfond, W.G., Viegas, J., Orso, A.: A Classification of SQL-Injection Attacks
and Countermeasures. In: Proceedings of the IEEE International Symposium on
Secure Software Engineering, Arlington, VA, USA (March 2006)

6. CERT: Advisory CA-2000-02: Malicious HTML Tags Embedded in Client Web
Requests (2002)

7. Netzer, R.H.B., Miller, B.P.: What are Race Conditions?: Some Issues and For-
malizations. ACM Letters on Programming Languages and Systems 1(1) (1992)
74–88

8. Dean, D., Hu, A.J.: Fixing races for fun and profit: How to use access(2). In:
Proceedings of the 13th conference on USENIX Security Symposium. (2004)

9. Borisov, N., Johnson, R., Sastry, N., Wagner, D.: Fixing races for fun and profit:
How to abuse atime. In: Proceedings of the 14th conference on USENIX Security
Symposium. (2005)

10. Bishop, M., Dilger, M.: Checking for race conditions in file accesses. Computing
Systems 2(2) (1996) 131–152

11. Abbott, R.P., Chin, J.S., Donnelley, J.E., Konigsford, W.L., Tokubo, S., Webb,
D.A.: Security analysis and enhancements of computer operating systems

12. phpBB Group: phpBB
13. Joomla! Core Team: Joomla!
14. Jovanovic, N.: Web Application Security. PhD thesis, Technical University of

Vienna (July 2007)
15. Hind, M.: Pointer analysis: Haven’t we solved this problem yet? In: 2001 ACM

SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and En-
gineering (PASTE’01). (2001)

16. PHP Documentation Group: PHP Manual. [Online; accessed 23-November-2007].
17. MySQL AB: MySQL Reference Manual. Online at

http://dev.mysql.com/doc/refman/5.0.
18. Sterling, N.: WARLOCK - A static data race analysis tool. In: Proceedings of the

Usenix Winter 1993 Technical Conference. (1993) 97–106
19. Engler, D., Ashcraft, K.: RacerX: Effective, Static Detection of Race Conditions

and Deadlocks. In: Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles. (2003) 237–252

20. Flanagan, C., Freund, S.N.: Type-based race detection for Java. ACM SIGPLAN
Notices 35(5) (2000) 219–232

21. Boyapati, C., Rinard, M.: A parameterized type system for race-free java pro-
grams. In: Proceedings of the 16th ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applications. (2001) 56–69

22. Dinning, A., Schonberg, E.: An empirical comparison of monitoring algorithms
for access anomaly detection. In: Proceedings of the Second ACM SIGPLAN
Symposium on Principles & Practice of Parallel Programming. (1990) 1–10

23. Ronsse, M., Bosschere, K.D.: RecPlay: A fully integrated practical record/replay
system. ACM Transactions Computer Systems 17(2) (1999) 133–152

24. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21(7) (July 1978) 558–565

25. Choi, J.D., Lee, K., Loginov, A., O’Callahan, R., Sarkar, V., Sridharan, M.: Effi-
cient and precise datarace detection for multithreaded object-oriented programs.
ACM SIGPLAN Notices 37(5) (May 2002) 258–269

26. Cheng, G.I., Feng, M., Leiserson, C.E., Randall, K.H., Stark, A.F.: Detecting data
races in Cilk programs that use locks. In: Proceedings of the 10th Annual ACM
Symposium on Parallel Algorithms and Architectures. (1998) 298–309

27. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.E.: Eraser: A
dynamic data race detector for multithreaded programs. ACM Transactions on
Computer Systems 15(4) (1997) 391–411

28. Yu, Y., Rodeheffer, T., Chen, W.: RaceTrack: Efficient detection of data race
conditions via adaptive tracking. Technical report, Microsoft Research (April 2005)

29. Pozniansky, E., Schuster, A.: Efficient on-the-fly data race detection in multi-
threaded C++ programs. ACM SIGPLAN Notices 38(10) (October 2003) 179–190

30. Tsyrklevich, E., Yee, B.: Dynamic detection and prevention of race conditions in
file accesses. In: Proceedings of the 12th USENIX Security Symposium. (August
2003)

31. Chamillard, A.T., Clarke, L.A., Avrunin, G.S.: An empirical comparison of static
concurrency analysis techniques (July 23 1996)

32. Visser, W., Havelund, K., Brat, G., Park, S.J.: Model checking programs. In:
Proceedings of the 15th IEEE International Conference on Automated Software
Engineering. (September 2000)

